Устранение перекоса фаз (напряжений), перекоса фазных нагрузок, выравнивание (симметрирование) напряжений (фаз), равномерное распределение нагрузок по фазам питающей сети существенно снижает расход электроэнергии, топлива генератора, обеспечивает безотказную работу электроприемников.
Явление перекоса фаз известно практически всем, кто так или иначе сталкивается с проблемами, связанными с потреблением электроэнергии. Перекос фаз проявляется в трехфазных четырех- (пяти-) проводных сетях с глухозаземленной нейтралью напряжением до 1000 В.
В идеальном состоянии фазное напряжение (напряжение между каждой из трех фаз и нулевым рабочим проводником) составляет 220 В. Векторная диаграмма напряжений генератора (модель, отображающая взаимосвязь и взаиморасположение фазных и линейных напряжений) показана на рис. 1.
Линейные напряжения образуют равносторонний треугольник с вершинами UA, UB, UC. Фазные напряжения 0A, 0B и 0C равны между собой и сдвинуты друг относительно друга на угол 120°. Данная модель является идеальной и перекос фазных напряжений в ней отсутствует.
Рис. 1. Векторная диаграмма
напряжений генератора
При подключении нагрузки на разные фазы, которая всегда отличается и по величине, и по характеру — резистивная и реактивная (индуктивная и емкостная), в питающей сети возникает перекос фазных напряжений. Помимо вреда, который наносит электроэнергия низкого качества непосредственно электроприемникам, возникают уравнительные токи, вызывающие дополнительный расход электроэнергии, и, соответственно, топлива, масла, охлаждающей жидкости при питании от генератора.
Схема, иллюстрирующая условия возникновения перекоса фаз (напряжений) представлена на рис. 2, где RA, RB, RC — активные сопротивления нагрузок по фазам, причем RA > RB > RC ≠ 0.
Если бы сопротивления нагрузки были равны, то токи, через них протекающие так же были равны между собой. Учитывая то, что угол сдвига между ними равен 120°, то их геометрическая сумма равнялась бы нулю.
Однако при их неравенстве в результате суммирования возникает ток I00′, который называется уравнительным (см. рис. 2.). А, следовательно, напряжение U00′, которое называется напряжением смещения. Графически напряжение смещения показано на рис. 3. красной сплошной линией. Красным пунктиром обозначены фазные напряжения, сдвинутые друг относительно друга на произвольный угол и отображающие перекос фаз. Белым пунктиром показана идеальная ситуация без перекоса фазных напряжений.
Рис. 2 Схема, иллюстрирующая условия
возникновения перекоса фаз.
Чем больше уравнительный ток, тем больше Ваши потери электроэнергии. Чем больше напряжение смещения, тем выше риск повреждений, отключений, отказов, неустойчивой работы Ваших электроприемников, генератора электроэнергии, тем быстрее они изнашиваются, тем больше потребляют ресурсов.
Рис. 3. Напряжение смещения.
Последствия перекоса фаз проявляются в увеличении электропотребление из сети; в неправильной работе электроприемников, их сбоях, отказах, отключениях, перегорании предохранителей, износе изоляции. Для трехфазных автономных источников неравномерность загрузки их фаз чревата механическими повреждениями подшипников валов, подшипниковых щитов генератора и приводного двигателя, закоксовыванию форсунок.
Условно негативные последствия перекоса фаз можно разделить на три группы:
а также последствия, связанные с увеличением расходов на:
Для обеспечения заданного напряжения на каждой из фаз традиционно используются стабилизаторы напряжения. В бытовых условиях применяют однофазные стабилизаторы напряжения, которые обеспечивают защиты отдельных электроприемников или небольшой их группы. В промышленных условиях используются трехфазные стабилизаторы напряжения различной мощности, которые конструктивно состоят из трех однофазных стабилизаторов напряжения.
Принцип их действия таков, что они реагируют на отклонения на каждой отдельно взятой фазе и поднимают или опускают напряжение до необходимого уровня на своей фазе, провоцируя изменения напряжений на двух других фазах и являясь, таким образом, вторичной причиной возникновения перекоса фаз.
Из изложенного выше ясно, что трехфазные стабилизаторы напряжения фактически не решают поставленную перед ними задачу, так как сами провоцируют несимметрию трехфазной системы. Помимо своего основного недостатка трехфазные стабилизаторы напряжения потребляют значительное количество электроэнергии и требуют значительных сервисных расходов, так как обладают низкой надежностью — и электромеханические, и электронные стабилизаторы напряжения имеют быстроизнашивающиеся и часто отказывающие детали.
Для решения задачи по устранению перекоса фазных напряжений и обеспечения заданного фазного напряжения необходимо использовать технологию, которая позволит выравнивать напряжение не на каждой из фаз по отдельности, а симметрировать фазы между собой, то есть симметрировать всю трехфазную систему. Такое устройство симметрирующий трансформатор обладает значительно большей эффективностью, оно не только само потребляет меньше электроэнергии, но и снижает электропотребление из сети для электроприемников.
Экономичность:
Надежность
Безопасность
Представленная технология допускает 100%-ый перекос нагрузки и устраняет перекос фазных напряжений во всем диапазоне их изменений независимо от причины перекоса: (1) перекос в подводящей питающей сети, вызванный неисправностями в распределительной сети, (2) неравномерное распределение фазных нагрузок, (3) подключение мощного потребителя, (4) комбинированные причины.
Рис. 4. Диапазон перекоса фазных напряжений.
Устранение перекоса фазных напряжений, т.е. выравнивание фаз сети друг относительно друга.
Ниже на рисунках представлены варианты подключения нагрузки без использования представленной технологии и с использованием представленной технологии.
Рис. 5. Подключение нагрузки напрямую к сети.
Максимальная нагрузка на одну фазу составляет треть от трехфазной мощности источника электроэнергии.
Подключение мощного однофазного электроприемника вызывает перекос фаз и повышает риск его повреждений и повреждений других электроприемников. Если мощность такого фазного потребителя превышает треть трехфазной мощности, это вызывает его неправильную работу (сбой, отключение, отказ).
Рис. 6. Подключение более мощной нагрузки к тому же (см. рис. 4)
источнику электроэнергии с использованием представленной технологии.
Максимальная нагрузка на одну фазу может составлять 50% от трехфазной мощности источника электроэнергии. Источник электроэнергии воспринимает нагрузку как равномерно распределенную по фазам.
Рис. 7. Подключение той же нагрузки (см. рис. 4) к генератору
меньшей мощности с использованием представленной технологии.
Технологии симметрирования фаз позволяет подключать ту же группу электроприемников к генератору электроэнергии меньшей мощности, при этом источник электроэнергии будет воспринимать нагрузку как равномерно распределенную по фазам.
Представленная технология запатентована, не имеет аналогов в России и за рубежом. Оборудование, производимое на основе данной технологии, сертифицировано и соответствует ТУ.
Результат повышения энергоэффективности при массовом внедрении
Массовое внедрение симметрирующих трансформаторов позволит более рационально использовать электроэнергию, снизить ее потери; обеспечивать тех же потребителей (группы электроприемников) меньшим количеством электроэнергии; снизить затраты на электроэнергию, затраты на топливо, масло, охлаждающую жидкость при питании от генератора; продлить срок службы электроприемников, уменьшить их износ, обеспечить безотказную работу электроприемников; снизить расходы на источники электроэнергии, так как для той же группы электроприемников возможно использование генератора меньшей мощности.